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A Kkinetic real-space renormalization-group approach to the shortest-path aggregation (SPA) is
presented. The fractal dimension (D) and a set of hierarchical dimensions D (q) are computed for the
SPA cluster on the square lattice. In particular, 2X2 and 3 X3 cell real-space renormalization groups
have been carried out. We find D,=1.19 and 1.21, respectively, in good agreement with the simulations.
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In the past decade, much interest has been devoted to
the irreversible aggregation of complex structures from
small subunits. It was recognized that many important
kinetic aggregation processes result in fractal geometry,
such as electron deposition and viscous fingering [1]. To
study the mechanism of fractal pattern formation, several
models have been considered in recent years, such as the
diffusion-limited aggregation (DLA) model [2] and the
ballistic aggregation model [3]. In particular, an irrever-
sible kinetic aggregation lattice model called the
shortest-path aggregation (SPA) has been introduced [4].
Unlike DLA, diffusion is no longer the mechanism in this
model. Similar to the DLA model, the SPA model is
highly unstable [4]. This is clear from definition of the
model: A seed is placed in a lattice. Particles released
from the randomly chosen distant sites will deposit on a
certain part of the cluster along the shortest Manhattan
path [4].

It is clear from the model that the screening effect in
this model is so strong that each tip of the cluster will
completely overshadow a certain region, prohibiting
growth, while growth in such a region is still allowed in
the DLA model (though it is small). Due to this strong
screening effect, this model generates noncompact clus-
ters with fractal dimension much smaller than that of the
DLA, and at the same time it is simpler than the latter
because of its more deterministic deposition path. The
simulations show that the shortest-path aggregation gen-
erates the clusters with fractal dimension being D =1.21
in two dimensions (2D) [4]. There are also numerical evi-
dences that there is a universal behavior of the cluster
formation in the sense that the fractal dimensions are the
same when the released particles are weakly correlated as
that when the released particles are independent of each
other [4].

It will be interesting to study the shortest-path aggre-
gation analytically. One of the natural approaches is the
real-space RG method because of the fractal structure of
the SPA clusters. In fact, the real-space RG approaches
had been applied to diffusion-limited aggregation [6-8].
In particular, Wang, Shapir, and Rubinstein [6] have re-
cently proposed a kinetic real-space renormalization
(KRG) approach in which the kinetic growth determines
the recursion relations for the probabilities of the
configuration on consecutive scales. The approach has
been applied to the DLA model successfully with very
good results. It has been further shown by Wang and
Huang [9] that this method is exact for DLA in infinite
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space.

Following the kinetic renormalization-group approach
to DLA [6], we will apply it to calculate the fractal and
multifractal dimensions for SPA in two-dimensional
space. The KRG approach is based on the combined
time and length scale invariance of the SPA cluster,
which is used to obtain the relation between the probabil-
ities for configurations on consecutive scales directly
from the growth process itself. Indeed, given a cluster
configuration at time ¢, probabilities for the configuration
at time ¢ +1 (with one more particle) are completely
defined from the growth probabilities on the surface sites.
The KRG approach uses the fact that the growth proba-
bility distribution remains invariant and is the same at
t +1 as it was at ¢t. In practice, we can only find the re-
cursion relations between probabilities of the
configurations of small cells, like the one we choose here
depicted in Fig. 1.

In the lattice-bond version of the SPA, using the KRG
approach of Wang et al., we thus distinguish between
three types of bonds at each order n of the transforma-
tion: bulk bonds representing the particles on the cluster
with mass M, (bold lines in Fig. 1); perimeter bonds with
mass m, (wavy lines), representing the surface of the ag-
gregate on which the next potential growth may occur;
and massless empty bonds for the rest (thin lines).

A cluster grows by changing perimeter bonds to bulk
bonds one by one according to probabilities which are
determined by the growth mechanism. As a particle is
added to the cluster one perimeter bond turns into a bulk
bond and all its unoccupied neighbors become growth
bonds. The following rules guide the transformation: If
the cell is connected from top to bottom by bulk bonds it
will be renormalized into a bulk bond; if the cell is com-
pletely empty it will be renormalized to an empty bond;
all other configurations are renormalized into a perimeter
bond. Therefore all configurations in Fig. 1(a) will be re-
normalized to the vertical perimeter bonds, and all
configurations in Fig. 1(b) will be renormalized to vertical
bulk bonds.

In order to find the local growth probabilities on each
bond, we notice that the particles are released from the
top and adhere to perimeter bonds along the shortest
path, and, if there is more than one such path for a par-
ticular particle, then each path has an equal chance to be
chosen. Let us take configuration 1 of Fig. 1(a) an an ex-
ample. If we denote p, ; and p, , as the growth probabil-
ities on the perimeter bonds 1 and 2, respectively. Ac-
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FIG. 1. (a) All possible configurations which are renormalized to the
vertical perimeter bonds for the square lattice in a 2 X2 cell. (b) All pos-
sible configurations which are renormalized to the vertical bulk bonds
for the square lattice in a 2 X2 cell.

cording to the growth mechanism, a particle has equal
probabilities to be released from the top left and top right
sides. Obviously, if the particle is released from the top
left side, perimeter bond 1 will be converted into a bulk
bond because perimeter bond 1 is the closest perimeter
bond from the released particle. On the other hand, the
particle will be deposited on perimeter bond 2 if it is
released from the top right side. Therefore
P1,1=P1,,=0.5. Similarly, we obtain the growth proba-
bilities of all the configurations in Fig. 1(a).

To find the probability C, for each configuration in
Fig. 1(a) to appear on the surface of the aggregate, we no-
tice that configuration 1 is generated from configuration
0 by one step of the SPA growth—by adding one bulk
bond to bond 1 of configuration 0, and replacing the two
empty bonds next to the added one by the perimeter
bonds, so

Ci=po,1Co - (1)

Configuration 2 is generated from configuration 1 by add-
ing one bulk bond to the bond 2 of configuration 1, such
that

C,=p1,C; . (2)
Thus
C,=C,, C,=0.5C,, (3a)

with the normalization condition
>C,=1. (3b)
a

The resulting configuration weights C, and the growth
probabilities p,; are presented in Table I. Notice that
the probabilities C, of various configurations were relat-

TABLEI Valuesof C, and p, ; (2X2 cell).

a Ca pa,l Pa,z
0 0.4 1 0

1 0.4 0.5 0.5
2 0.2 0.5 0.5
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FIG. 2. The plot of D(q) vs g for the SPA on the square lattice for
2X2 and 3 X3 cell renormalizations.

ed to each other by the growth process itself.

All possible configurations which are renormalized to a
bulk bond are shown in Fig. 1(b). W, is the weight of
configuration a to appear in the SPA cluster. Similar to
the relations between C,, we obtain the following rela-
tions for W ’s:

W,=0.5C, W,=0.5C . (3c)

Based on the length and time scale invariance of the clus-
ter, we expect that the weights C,’s and W ’s are invari-

TABLEII. Values of C, and p,, ; (3X3 cell).

a C, Pai Pap Pa3 Pas Pgq,s
0 0.116 696 1 0 0 0 0
1 0.116 696 1 0 0 0 0
2 0.116 696 Z 3 0 0 0
3 0.116 696 2 : 3 0 0
4 0.077797 1 2 0 0 0
5 0.038 899 3 1 1 0 0
6 0.038 899 1 1 1 0 0
7 0.077797 1 1 1 0 0
8 0.103730 . . . 0 0
9 0.025932 1 & = : 0

10 0.038 899 1 1 + 1 0

1 0.012966 1 1 1 0 0

12 0.034 577 1 3 3 0 0

13 0.011526 1 1 : % 0

14 0.013 687 1 1 1 0 0

15 0.004 322 3 + 3 : %

16 0.013 687 1 1 1 0 0

17 0.012 966 1 1 1 1 0

18 0.003 362 1 1 1 1 0

19 0.003 842 . 1 1 3 3

20 0.006 723 1 1 1 0 0

21 0.003 362 1 1 1 1 0

22 0.006 723 1 1 1 0 0

23 0.000 987 1 1 1 0 0

22 0.000 560 1 1 1 0 0

25 0.001974 1 1 1 0 0
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FIG. 3. The plot of f vs a for the SPA on the square lattice for 2 X2

and 3X 3 cell renormalizations.
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FIG. 4. All possible configurations which are renormalized to the
vertical perimeter bonds for the square lattice in a 3 X3 cell.

ant under our RG transformation. Therefore we derive

the recursion relation for the masses M, and m,: from
Fig. 1,
mnz(C0+C‘+2C2)mn_1+(C1+C2)Mn_1 ’ (4a>
M, =QWy+2W )M, +Wm,_, . (4b)

From Egs. (3a) and (4b), we obtain the recursion rela-
tions,

m,=12m,_+0.6M,_,, (5a)
M,=2M,_,+0.5m,_, . (5b)
From the largest eigenvalue A, we find the fractal di-
mension of the cluster:
D;=1In(A,)/In(2)=[In(2.28)/In(2)]=1.19 . (6)
From the probabilities C, of configurations a present-
ed in Fig. 1(a) and the growth probabilities p,, ; at perime-

ter bonds, the hierarchical dimensions of Halsey et al.
[4,10] are in our case

-9
D(q)="ln(o'4+l'qzi<f M/I02) Ly ()

D(1)=0.6 . (7b)
The resulting D (q) is shown in Fig. 2. It is a monotonic
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FIG. 5. All possible configurations which are renormalized to the
vertical bulk bonds for the square lattice in a 3 X3 cell.
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curve consistent with the inequality [11] D(q)<D(q’)
when ¢>q’. The f-a spectrum [10] is given by the
Legendre transformation of D (g),

df /9q=q(3a/3q) , (8a)

d[(g —1)D(q)]/9g =alq) . (8b)
The result is shown in Fig. 3. It is a convex curve, as ex-
pected.

Similarly, 3 X3 cell renormalization of the SPA on the
square lattice can be carried out directly. Then all the
configurations which are renormalized to the vertical per-
imeter bond and the vertical bulk bond are shown in
Figs. 4 and 5. The values of C,, growth probabilities p,, ;
on the external perimeter bonds (Table II), and W, can
be found from
C,=Cy C,=Cy, C3=C, C,=0.6667C, ,

C5=0.6667C,, Cs=0.6667C,, C,=0.8889C, ,
C3=0.2222C,, Cy=0.3333C,, C,,=0.1111C, ,

C,,=0.2963C,, C,,=0.0988C,, C,;;=0.1173C, ,
C,,=0.0370C,;, C;5=0.1173Cy, C;s=0.1111C, ,(
C17=0.0288C,, C13=0.0329C;, Cpy=0.0576C;,
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C,,=0.0288C,,
C,;=0.0048C,,

C,;=0.0576C,, C,,=0.0085C, ,
C,,=0.0169C,, 3 C,=1.

a
W,=0.2222C,

W,=0.0741C,
W, =0.0329C,

W,=0.0782C,
W,,=0.0219C,
W,5=0.0576C,
W4 =0.0168C,

wW,=0.2222C, W,=0.5926C ,

W,=0.1111C, W5;=0.2963C ,
W,=0.0782C, W;=0.0123C ,

W,,=0.0741C, W, =0.0192C , (9b)
W,;=0.0576C, W,,=0.0192C ,
W,s=0.0085C, W,;=0.0048C ,

S W,=1.

Therefore, from the mass conservation, the recursion
relations are
m,=1.4954m, _,+1.2536M

n—1>»

(10a)
I (10b)

with eigenvalues A, =3.7586 and A_=0.8422.
Therefore the fractal dimension is D,
=In(3.7586)/In(3.0)=1.205, which is in surprisingly
good agreement with simulation value 1.21 [4].

The hierarchical dimensions are given by

M,=1.1792M, _,+3.1054m

D(q)=—1n[0.233+0.311X(3)74+0.078 X279+1.271 X379+0.052 X (% )?

+0.469X677+0.038X979]/[(¢g —DIn(3)] (¢g#1),

D(1)=0.677,

which are shown in Fig. 2, and the f-a spectrum is
shown in Fig. 3. The surprising overlap of the curves in
both Figs. 2 and 3 in the large-g (small-a) region is a
strong sign in favor of the approach. There is no reason
to expect the good convergence of the D(q)-g and f-a
curves of finite-size RG calculations for small and nega-
tive g where the extremely small growth probability re-
gion will dominate the value of D(q). In fact, the clear
deviation of D (q)-q and f-a curves of 3X3 cell RG cal-
culation from those of 2X2 cell RG calculation is con-
sistent with the suggestion that the multifractal concept
may not be applicable for negative g in fractal aggrega-
tion [12-14].

To summarize, we have applied the KRG method of
Wang, Shapir, and Rubinstein to the SPA deposition pro-

(11a)
(11b)

l . . . .
cess in a two-dimensional square lattice. Our value

D,=1.205 is to be compared with the square-lattice
simulation value D,=1.2110.01 [4]. We have also cal-
culated the multiscaling structure of the shortest-path ag-
gregation. We find that the values of multifractal dimen-
sions, such as f(a), from 2X2 and 3 X3 cell RG calcula-
tions agree with each other very well for small « (large g),
while they deviate with each other at large a (small and
negative q). The further simulation of the SPA model on
the multifractal dimensionality D (g) will be useful in or-
der to test the theory. The similar calculations on three
and higher dimensions are straightforward, and it will be
interesting to carry out such calculations and compare
with corresponding simulation results.

[1] T. Visek, Fractal Growth Phenomena (World Scientific,
Singapore, 1989).

[2] T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400
(1981); Phys. Rev. B 27, 2686 (1983).

[3] S. Liang and L. P. Kadanoff, Phys. Rev. A 31, 2628 (1985);
Phys. Lett. 102A, 38 (1984).

[4] X. R. Wang, Phys. Rev. A 40, B6767 (1989); X. R. Wang
and X. F. Wang, ibid. 45, 1274 (1992).

[5] M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett.
56, 889 (1986); Y. Shapir, J. Phys. A 18, L897 (1985); Y.
Shapir and Y. C. Zhang, J. Phys. Lett. 46, 529 (1985).

[6] X. R. Wang et al., Phys. Rev. A 39, 5974 (1989); J. Phys.
A 22,1507 (1989); Phys. Lett. A 138 (1989).

[71 H. Gould et al., Phys. Rev. Lett. 50, 686 (1983); N. Nakan-

ishi and F. Family, Phys. Rev. A 32, 3606 (1985).
[8] T. Nagatani, J. Phys. A 20, L381; 20, L623 (1987).
[9] X. Wang and Y. Huang, Phys. Rev. A 46, 5038 (1992).
[10] T. C. Halsey et al., Phys. Rev. A 33, 1141 (1986); C. Ami-
trano et al., Phys. Rev. Lett. 57, 1016 (1986).
[11]H. G. E. Hentschel and I. Procaccia, Physica D 8, 435
(1983).
[12] A. Aharony, Tel Aviv University Report No. TAUP-
1778-90, 1990 (unpublished).
[13] J. Lee and H. E. Stanley, Phys. Rev. Lett. 61, 2945 (1988).
[14] M. H. Jensen, in Universalities in Condensed Matter, edit-
ed by R. Jullien, L. Peliti, R. Rammal, and N. Boccara
(Springer, Heidelberg, 1988), p. 233.



